
BASUDEV GODABARI DEGREE COLLEGE, KESAIBAHAL

Department of Computer Science
“Self Study Module”

Module Details:

• Class – 6th Semester
• Subject Name: COMPUTER SCIENCE

• Paper Name : “Algorithm Design Techniques”

UNIT-2: STRUCTURE

Searching and Sorting: Analysis of Linear Search, Binary Search, Merge Sort and Quick Sort, Heap Sort.
Hashing: Hash functions, Hash table, Collision resolution: Chaining and Open Addressing (Linear probing,
Quadratic probing, Double hashing)

Learning Objective

 Sorting and searching algorithms are fundamental tools for analyzing and manipulating data. They can

help you find, organize, and compare information in various contexts and scenarios. In this article, you will

learn how to apply some common sorting and searching algorithms to real-world problems or scenarios.

You Can use the Following Learning Video link related to above topic:

https://youtu.be/YJeoQBevNVo?list=PLDzeHZWIZsTp4pb_WBRahP1tnipLuX9qM
https://youtu.be/UdO2NeHB46c?list=PLDzeHZWIZsTp4pb_WBRahP1tnipLuX9qM
https://youtu.be/zOhUavxlzw4?list=PLDzeHZWIZsTp4pb_WBRahP1tnipLuX9qM

You Can also use the following Books

Text books
1. Introduction to Algorithms, by Thomas H, Cormen, Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, PHI.

Reference books
1. Algorithm Desgin, by Jon Kleinberg, Eva Tardos.

https://www.pdfdrive.com/

Quick Sort

Quick sort is a comparison based sorting algorithm that follows the divide and conquer technique

to sort the arrays. In quick sort, we usually use a pivot (key) element to compare and interchange

the position of the element based on some condition. When a pivot element gets its fixed position

in the array that shows the termination of comparison & interchange procedure. After that, the

array divides into the two sub arrays. Where the first partition contains all those elements that are

less than pivot (key) element and the other parts contains all those elements that are greater than

https://youtu.be/UdO2NeHB46c?list=PLDzeHZWIZsTp4pb_WBRahP1tnipLuX9qM
https://www.javatpoint.com/quick-sort

pivot element. After that, it again selects a pivot element on each of the sub arrays and repeats the

same process until all the elements in the arrays are sorted into an array.

Algorithm of Quick Sort

Partition (A, p, r)

1. X <- A[r]

2. I <- p-1

3. For j <- p to r -1

4. Do if A[j] <= x

5. Then I <- I + 1

6. Exchange A[i] <-> A[j]

7. Exchange A[I + 1] <--> A[r]

8. Return I + 1

Quicksort (A, p, r)

Backward Skip 10sPlay VideoForward Skip 10s

1. While (p < r)

2. Do q <- Partition (A, p, r)

3. R <- q-1

4. While (p < r)

5. Do q <- Partition (A, p, r)

6. P <- q + 1

Steps to sort an array using the quick sort algorithm

Suppose, we have an array X having the elements X[1], X[2], X[3],…., X[n] that are to be sort. Let's

follow the below steps to sort an array using the quick sort.

Step 1: Set the first element of the array as the pivot or key element. Here, we assume pivot as

X[0], left pointer is placed at the first element and the last index of the array element as right.

Step 2: Now we starts the scanning of the array elements from right side index, then

If X[key] is less than X[right] or if X[key] < X[Right],

1. Continuously decreases the right end pointer variable until it becomes equal to the key.

2. If X[key] > X[right], interchange the position of the key element to the X[right] element.

3. Set, key = right and increment the left index by 1.

Step 3: Now we again start the scanning of the element from left side and compare each element

with the key element. X[key] > X[left] or X[key] is greater than X[left], then it performs the following

actions:

1. Continuously compare the left element with the X[key] and increment the left index by 1 until key

becomes equal to the left.

2. If X[key] < X[left], interchange the position of the X[key] with X[left] and go to step 2.

Step 4: Repeat Step 2 and 3 until the X[left] becomes equal to X[key]. So, we can say that if X[left]

= X[key], it shows the termination of the procedures.

Step 5: After that, all the elements at the left side will be smaller than the key element and the rest

element of the right side will be larger than the key element. Thus indicating the array needs to

partitioned into two sub arrays.

Step 6: Similarly, we need to repeatedly follow the above procedure to the sub arrays until the

entire array becomes sorted.

Let's see an example of quick sort.

Example: Consider an array of 6 elements. Sort the array using the quick sort.

arr[] = {50, 20, 60, 30, 40, 56}

In the above array, 50 is in its right place. So, we divided the elements that are less than pivot in

one sub array and the elements that are larger than the pivot element in another sub array.

Hence, we get the sorted array.

Let's implement the above logic in C program.

Quick.c

1. #include <stdio.h>

2. int division_of_array(int x[], int st, int lt); // declaration of functions

3. void quick_sort(int x[], int st, int lt);

4. void main()

5. {

6. int i;

7. int ar[6] = {50, 20, 60, 30, 40, 56}; // given array elements

8. quick_sort(ar, 0, 5); // it contains array, starting index and last index as an parameters.

9. print(" Sorted Array is : \n");

10. for(i=0; i<6; i++)

11. {

12. printf("Array = %d\t", ar[i]);

13. }

14. int division_of_array(int x[], int st, int lt)

15. {

16. int left, right, temp, key, flag;

17. key = left = st; // initially these variables are in same place.

18. right = lt;

19. flag = 0;

20. while(flag != 1)

21. {

22. while((x[key] <= x[right]) && (key != right))

23. right--;

24. if(key == right) // if pivot element is equal to the last index.

25. flag = 1;

26. else if(x[key] > x[right]) // if pivot is greater than last index.

27. {

28. temp = x[key];

29. x[key] = x[right];

30. x[right] = temp;

31. key = right;

32. }

33. if (flag != 1)

34. { /* Repeat the while loop until pivot is greater than left and equal to the left. */

35. while((x[key] >= x[left]) && (key != left))

36. left++;

37. if(key == left)

38. flag = 1;

39. else if(x[key] < x[left])

40. {

41. temp = x[key];

42. x[key] = x[left];

43. x[left] = temp;

44. key = left;

45. }

46. }

47. }

48. return key;

49. }

50. }void quick_sort(int x[], int st, int lt)

51. {

52. int key;

53. if(st<lt) // left index value is greater than right index.

54. {

55. key = division_of_array(x, st, lt);

56. quick_sort(x, st, key-1);

57. quick_sort(x, key+1, lt);

58. }

59.

60. }

Output:

Sorted Array is:

Array = 50 20 60 30 40 56

Merge sort

Merge sort is a most important sorting techniques that work on the divide and conquer strategies.

It is the most popular sorting techniques used to sort data that is externally available in a file. The

merge sort algorithm divides the given array into two halves (N/2). And then, it recursively divides

the set of two halves array elements into the single or individual elements or we can say that until

https://www.javatpoint.com/merge-sort

no more division can take place. After that, it compares the corresponding element to sort the

element and finally, all sub elements are combined to form the final sorted elements.

Steps to sort an array using the Merge sort algorithm

1. Suppose we have a given array, then first we need to divide the array into sub array. Each sub array

can store 5 elements.

2. Here we gave the first sub array name as A1 and divide into next two subarray as B1 and B2.

3. Similarly, the right sub array name as A2 and divide it into next two sub array as B3 and B4.

4. This process is repeated continuously until the sub array is divided into a single element and no more

partitions may be possible.

5. After that, compare each element with the corresponding one and then start the process of merging

to arrange each element in such a way that they are placed in ascending order.

6. The merging process continues until all the elements are merged in ascending order.

Let's see an example of merge sort.

Example: Consider an array of 9 elements. Sort the array using the merge sort.

arr[] = {70, 80, 40, 50, 60, 11, 35, 85, 2}

Hence, we get the sorted array using the merge sort.

Let's implement the above logic in a C program.

Merge.c

1. #include <stdio.h>

2. //#include <conio.h>

3. #include <stdlib.h>

4.

5. void merge(int arr[], int l, int m, int end)

6. {

7. int i, j, k;

8. int a1 = m - l + 1;

9. int a2 = end - m;

10.

11. // create temp subarray

12. int sub1[a1], sub2[a2];

13.

14. // Store data to temp subarray subArr1[] and subArr2[]

15. for (i = 0; i < a1; i++)

16. sub1[i] = arr[l + i];

17. for (j = 0; j < a2; j++)

18. sub2[j] = arr[m + 1 + j];

19.

20. // Merge the temp array into the original array arr[]

21. i = 0;

22. j = 0;

23. k = l;

24. while (i < a1 && j < a2)

25. {

26. if (sub1[i] <= sub2[j])

27. {

28. arr[k] = sub1[i];

29. i++;

30. }

31. else

32. {

33. arr[k] = sub2[j];

34. j++;

35. }

36. k++;

37. }

38.

39. // copry the rest element of subArr1[], if some element is left;

40. while (i < a1)

41. {

42. arr[k] = sub1[i];

43. i++;

44. k++;

45. }

46.

47. // copry the rest element of subArr2[], if some element is left;

48. while (j < a2)

49. {

50. arr[k] = sub2[j];

51. j++;

52. k++;

53. }

54. }

55.

56. /* st represents the first index and end represents the right index of the subarray of arr[] to be sorted

using merge sort. */

57. void mergeSort(int arr[], int l, int end)

58. {

59. if (l < end)

60. {

61. int m = l + (end - l) / 2;

62.

63. mergeSort(arr, l, m);

64. mergeSort(arr, m + 1, end);

65.

66. merge(arr, l, m, end);

67. }

68. }

69.

70. // Function to print the merge sort.

71. void mergePrint(int Ar[], int size)

72. {

73. int i;

74. for (i = 0; i < size; i++)

75. printf("%d \t", Ar[i]);

76. printf("\n");

77. }

78.

79. int main()

80. {

81. int arr[] = { 70, 80, 40, 50, 60, 11, 35, 85, 2 };

82. int arr_size = sizeof(arr) / sizeof(arr[0]);

83.

84. printf(" Predefined Array is \n");

85. mergePrint(arr, arr_size);

86.

87. mergeSort(arr, 0, arr_size - 1);

88.

89. printf("\n Sorted array using the Merge Sort algorithm \n");

90. mergePrint(arr, arr_size);

91. return 0;

92. }

Output:

Predefined Array is

70 80 40 50 60 11 35 85 2

 Sorted array using the Merge Sort algorithm

2 11 35 40 50 60 70 80 85

Quick Sort vs. Merge Sort

S.N. Parameter Quick Sort Merge Sort

1. Definition It is a quick sort algorithm that

arranges the given elements into

ascending order by comparing and

interchanging the position of the

elements.

It is a merge sort algorithm that arranges the

given sets of elements in ascending order

using the divide and conquer technique, and

then compare with corresponding elements to

sort the array.

2. Principle It works on divide and conquer

techniques.

It works on divide and conquer techniques.

3. Partition of

elements

In quick sort, the array can be divide

into any ratio.

Merge sort partition an array into two sub

array (N/2).

4. Efficiency It is more efficient and work faster in

smaller size array, as compared to

the merge sort.

It is more efficient and work faster in larger

data sets or array, as compare to the quick

sort.

5 Sorting

method

It is an internal sorting method that

sort the array or data available on

main memory.

It is an external sorting method that sort the

array or data sets available on external file.

6 Time

complexity

Its worst time complexity is O (n2). Whereas, it's worst time complexity is O (n log

n).

7 Preferred It is a sorting algorithm that is

applicable for large unsorted arrays.

Whereas, the merge sort algorithm that is

preferred to sort the linked lists.

8 Stability Quick sort is an unstable sort

algorithm. But we can made it stable

by using some changes in

programming code.

Merge sort is a stable sort algorithm that

contains two equal elements with same values

in sorted output.

9 Requires

Space

It does not require any additional

space to perform the quick sort.

It requires the additional space as temporary

array to merge two sub arrays.

10. Functionality Compare each element with the

pivot until all elements are arranged

in ascending order.

Whereas, the merge sort splits the array into

two parts (N/2) and it continuously divides the

array until an element is left.

How do you apply sorting and searching algorithms to real-world problems or scenarios?

Sorting and searching algorithms are fundamental tools for analyzing and

manipulating data. They can help you find, organize, and compare information

in various contexts and scenarios. In this article, you will learn how to apply

some common sorting and searching algorithms to real-world problems or

scenarios.

Sorting algorithms

Sorting algorithms are methods of arranging data in a certain order, such as

ascending, descending, alphabetical, or numerical. Sorting algorithms can have

different advantages and disadvantages depending on the size, type, and

distribution of the data. Some examples of sorting algorithms are bubble sort,

insertion sort, merge sort, quick sort, and heap sort. Sorting algorithms can

help you sort data for easier access, analysis, or presentation. For example, you

can use a sorting algorithm to sort a list of names alphabetically, a list of

numbers from smallest to largest, or a list of products by price or popularity.

Searching algorithms

Searching algorithms are methods of finding a specific element or value in a

collection of data, such as an array, a list, a tree, or a graph. Searching

algorithms can have different approaches and complexities depending on the

structure, size, and order of the data. Some examples of searching algorithms

are linear search, binary search, depth-first search, breadth-first search, and

hash table search. Searching algorithms can help you locate data for retrieval,

modification, or verification. For example, you can use a searching algorithm to

find a name in a phone book, a number in a sorted array, a path in a maze, or a

keyword in a document.

Sorting and searching in real-world scenarios

Sorting and searching algorithms can be applied to various real-world

scenarios that involve data analysis and manipulation. For instance, in e-

commerce, these algorithms can help customers find and compare products

based on criteria such as price, rating, category, or availability. Quick sort and

binary search algorithms can be used for this purpose. In social media, sorting

and searching algorithms can help users find and interact with content and

people based on their preferences, interests, or connections. Merge sort and

https://www.linkedin.com/advice/1/what-some-common-pitfalls-errors-when-using-sorting?trk=article-ssr-frontend-x-article_little-text-block

hash table search algorithms can be used for this purpose. In education, sorting

and searching algorithms can help students and teachers organize and access

information and resources based on their needs, goals, or levels. Insertion sort

and depth-first search algorithms can be used for this purpose. In health care,

sorting and searching algorithms can help doctors and patients diagnose and

treat diseases and conditions based on their symptoms, tests, or treatments.

Heap sort and breadth-first search algorithms can be used for this purpose.

Benefits of sorting and searching algorithms

Sorting and searching algorithms can provide various benefits for data analysis

and manipulation, such as improved efficiency, accuracy, and flexibility. These

algorithms can reduce the time and space complexity of data processing,

eliminate errors and inconsistencies in data, and adapt to different data types,

structures, and orders. Additionally, sorting and searching algorithms can

inspire new ideas and insights for data exploration and innovation, enabling

data-driven decision making and problem solving.

Challenges of sorting and searching

algorithms

Sorting and searching algorithms can present some challenges for data analysis

and manipulation. These algorithms can involve complex logic, mathematics,

and programming, and require a deep understanding of data structures and

algorithms concepts and principles. Additionally, there are trade-offs between

time and space complexity, stability and instability, and simplicity and

sophistication that must be carefully evaluated and selected. Furthermore,

sorting and searching algorithms can have some limitations and drawbacks in

terms of data quality, security, and privacy, and thus require proper handling

and protection of data and information.

